服务热线: 025-85381280
专业领域 更多
文献解读 / Case 更多
  • 浏览次数: 4
    发布时间: 2018 - 12 - 13
    发表期刊:Postharvest Biology and Technology影响因子:IF=3.112(SCI二区)研究背景草莓(Fragaria×ananassa Duch.)由于其独特的风味和多汁的质地,是一种在世界范围内广受欢迎的园艺作物。它是维生素C和抗氧化剂的良好来源,但由于软化快、机械损坏、真菌腐烂和采后代谢迅速,很容易腐烂。在6℃贮藏1d后,草莓果实中的蔗糖水平由于快速的采后代谢而达到无法检测的水平。虽然草莓品种的贮藏期不同,但平均贮藏期通常只有3-5d。先前研究报道了CO2诱导的生理和机械变化,收获后,草莓果实中含有较高水平的二氧化碳(CO2)以提高可储存性。暴露于20%CO2中12或48h的草莓果实比在环境空气中贮藏3d的水果更结实。高浓度的二氧化碳会影响细胞壁钙的结合,提高果实的硬度。为了深入了解高浓度CO2在分子和生化水平上的影响,多学科方法是必要的。整合基因组学、蛋白质组学和代谢组学将有助于更好地理解植物对外界刺激的全面定性和定量反应。尽管对草莓果实采后对高CO2的响应进行了研究,但对细胞反应的全面了解仍不甚清楚。本研究联合转录组学和代谢组学方法来研究分子和细胞反应,将收获的草莓果实短期暴露于30%CO2,以全面了解改善的果实耐贮性。材料与方法01植物材料与CO2处理草莓于80%红色收获,收获后,果实立即运往实验室。选择大小和颜色一致的果实作为试验材料。分组:0D:环境空气0h(收获后立即)1D:3h环境空气处理后1d1DT:3h 30%CO2处理后1d 02硬度测定随机抽取3个重复容器中的10个草莓果实进行硬度测定(n=30),经硬度测定后丢弃。采用CT-3纹理分析仪进行硬度测量。用直径为100mm、速度为2mm、应变为5mm、直径为100 mm的平板探针,在果实赤道面测量果实硬度(N)。草莓果实表面微生物...
  • 浏览次数: 9
    发布时间: 2018 - 12 - 13
    集思慧远客户发表——《王枣子根、茎和叶的比较转录组分析揭示了王枣子素生物合成的候选基因》英文标题:Comparative transcriptome analysis of roots, stems and leaves Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis杂志:BMC PLANT BIOLOGY影响因子:IF=3.930摘要    王枣子是一种重要的中药植物,具有治疗多种疾病的药理作用,包括肺结核。四环二萜类化合物王枣子素(王枣子甲素Wang zaozin A,王枣子乙素GlucocalyxB)是王枣子的主要生物活性化合物。然而,关于这些化合物生物合成的分子信息仍然不清楚。通过对王枣子中王枣子素积累水平的研究,发现该植物的根、茎和叶组织有很大的变化,表明不同组织间代谢产物生物合成和积累的可能存在差异。为了更好地阐明四环二萜生物合成途径,我们对根、茎和叶组织进行转录组测序,并进行了de novo序列组装和分析。分析了与二萜类生物合成有关的候选基因,如CPS、KSL等。用qRT-PCR方法对8种涉及四环二萜类生物合成的转录本在王枣子不同组织中的表达谱进行了验证,解构该通路的基因表达谱。ISPD、ISPF和ISPH(MEP途径)以及IaCPS和IaKSL(二萜类途径)候选基因在叶片和根中的差异表达,可能是造成王枣子叶片中王枣子素积累较高的原因之一。本文报道的基因组数据和分析为进一步研究这一重要药用植物奠定了基础。材料与方法植物材料:一年生健康王枣子个体的根、茎、叶(3个重复)王枣子素的提取与鉴定(靶标代谢):种类:王枣子甲素、王枣子乙素和王枣子丙素        &...
  • 浏览次数: 8
    发布时间: 2018 - 12 - 10
    英文标题:Selection and Validation of Novel RT-qPCR Reference Genes under Hormonal Stimuli and in Diferent Tissues of Santalum album杂志:Scientific  Reports影响因子:IF=4.122摘要   逆转录实时定量聚合酶链式反应 (RT-qPCR)因其高通量、特异性和敏感性而被广泛应用于基因表达水平的研究。为了获得准确可靠的结果,RT-qPCR分析必须有一个合适的参考基因。到目前为止,经济热带树种檀香((Santalum album L.)还没有被验证的可靠参考基因。在本研究中,有13个候选参考基因(包括从大量的檀香转录组数据中筛选出的12个新的可能的参考基因,以及目前使用的β-actin基因)在不同的组织(茎、叶、根和愈伤组织)、以及水杨酸(SA)、茉莉酸甲酯 (MeJA)、赤霉素(GA)处理作用下的愈伤组织中,用GeNorm,NormFinder,BestKeeper,Delta CT和 RefFinder算法综合验证。几种新的候选参考基因比目前使用的传统基因ACT要稳定得多。SA处理中ODD和Fbp1、MeJA处理中的CSA 和Fbp3、JA处理中的PP2C和Fbp2、以及3个激素处理中FBP 1和FBP 2,分别是最准确的参考基因。当FAB1A与PP2C结合后,被鉴定为四种组织最适宜的参考基因组合。而HLMt, PPR和FAB1A的组合则是所有实验样本中最理想的参考基因。此外,为了验证我们的结果,我们还通过参考基因及他们的组合在MeJA处理下的三种檀香组织中评估了SaSSy基因的相对表达水平。本研究中所鉴定的参考基因将提高RT-qPCR分析的准确性,并将有...
  • 浏览次数: 17
    发布时间: 2018 - 12 - 03
    发表期刊:Microbiome影响因子:9.133(SCI一区)研究背景最近几年,对肠道微生物群(GM)的研究已经不仅仅是描述分类组成,通常是将16S rRNA基因测序应用于粪便样本,更广泛地研究GM的功能潜力,这是通过鸟枪法宏基因组学(MG)方法实现的。群体MG研究表明,尽管存在较大的个体间结构/组成变异,GMs仍有一组稳定的核心功能。然而,由于测序的基因不一定表达,MG不能提供可靠的信息,说明哪些微生物的功能特征实际上在响应宿主代谢、免疫、神经生物学、饮食或其他环境因素的刺激而发生变化。相反,这类信息可以由功能宏组学收集,如宏转录组学(MT)和宏蛋白质组学(MP),它们对微扰具有较高的敏感性,因此可能更好地反映宿主微生物相互作用。在这方面,特别令人感兴趣的是调查人类群体中潜在的和实际活跃的GM特征之间的关系,为了从已知的MG的潜能开始鉴定在健康肠中组成型表达的微生物功能。最近的一项研究已经针对MT实现了这一目标,在具有最高表达率(mRNA/DNA比率)和参与淀粉代谢,氨基酸生物合成,孢子形成和以及具有最低表达率的肽聚糖生物合成的基因中发现了核糖体蛋白和柠檬酸循环酶的转录物。人们对微生物蛋白的了解较少,尽管它们提供了有关GM代谢的主要信息,并且代表了宿主-GM相互作用中的关键分子。尽管有一些开创性的研究提出了对疾病有关的人类群体中的宏基因组和宏蛋白组的分析,到目前为止,还没有系统地、比较地调查健康人群的分类学和功能特征,这种特征可能和实际由GM表达。材料与方法01实验设计图1本研究的实验设计注:从临床监测的撒丁岛人群中选出15名健康成人(男性7名,女性8名)。从每个人身上采集粪便样本,同时进行Illumina鸟枪法DNA测序(宏基因组)和LTQ-Orbitrap鸟枪法质谱分析(宏蛋白组)。宏基因组学也被用作序列数据库,以便进行严格的宏蛋白质组/宏基因组比较,并进行分类和功...
  • 浏览次数: 19
    发布时间: 2018 - 11 - 26
    摘要全转录组范围内鉴定能与蛋白结合的RNA(RBPs),是了解转录后基因调控网络的必要条件。然而RBPs蛋白组的研究主要局限于多聚腺苷酸的RNA与蛋白的结合,对于没有ploy-A尾的RNA(主要的是非编码RNA和RNA前体)几乎都没发现。本文介绍了一种点击化学(主旨是通过小单元的拼接,来快速可靠地完成形形色色分子的化学合成。它尤其强调开辟以碳-杂原子键(C-X-C)合成为基础的组合化学新方法,并借助这些反应(点击反应)来简单高效地获得分子多样性。)辅助的RNA互作捕获策略(CARIC),能够对RBPs进行无差别鉴定,不受RNA是否具有ploy-A尾的约束。CARIC主要是利用炔基尿苷类似物对RNA进行标记,并在活体内进行RNA-protein光照交联,然后与叠氮化物生物素进行点击化学反应,亲和富集后进行蛋白组分析。利用CARIC在人的宫颈癌细胞中鉴定到597个RBPs,包括130个之前未知的RBPs。这些新发现的RBPs可能是和非编码RNA结合的,因此发现了一些之前未知的非编码RNA参与的过程(例如蛋白酶体功能和中间代谢)。材料方法实验材料:人的宫颈癌细胞,胚肾细胞;质粒构建和细胞转染:克隆宫颈癌细胞cDNA(hnRNPC,MBNL1,VDAC1,NME2),克隆质粒:VigoFect;几种已知RPBs用来验证CARIC技术成功率CARIC分离出的RNA测序:Illumina HisEq 4000 PE150;蛋白质谱检测:LC-MS/MS,Easy nLC 1000 system +Velos Pro Orbitrap Elite mass spectrometer;质谱数据分析:MaxQuant version 1.5.5.1(原始数据分析),依靠人的蛋白数据(UniProt)Andromeda search engine进行蛋白查询;CARIC RBPs验证:CLIP...
  • 浏览次数: 23
    发布时间: 2018 - 11 - 09
    前沿慢性阻塞性肺病(COPD)是一种炎性疾病,其特征在于进行性空气流量限制,并且被认为部分地由于响应于慢性空气污染物暴露(主要来自吸烟)而引起的夸大的肺部炎症。目前可用的治疗方法在很大程度上是无效的。因此,有效治疗COPD迫切需要新型的治疗药物。前期系统药理学鉴定了补肺益肾方(BYF)的195种潜在靶点,并被证实对慢性阻塞性肺疾病(COPD)大鼠有短期治疗作用。然而,对慢性阻塞性肺疾病(COPD)的长期疗效及机制尚不清楚。因此,本研究以慢性阻塞性肺疾病(COPD)大鼠为研究对象,于第9~20周给药。然后通过转录组学-蛋白质组学-代谢组学分析第32周BYF对慢性阻塞性肺病大鼠的长期影响。材料与方法样本收集第0-8周构建COPD大鼠模型,将32只大鼠置于一个暴露于烟草和反复肺炎克雷伯菌感染的封闭的盒子里,第9-20周大鼠每日灌胃给予生理盐水(2mL)、BYF(4.44g/kg,0.5g/ml)和氨茶碱(2.3mg/kg)。检测方法转录组:Microarray(4×44K)大鼠全基因组表达谱芯片;蛋白组:8-plex iTRAQ,NanoLC-QTOF-MS;代谢组:Agilent-1200 LC-Agilent-6520 Q-TOF;数据分析Agilent GeneSpring GX software version 11.0Mascot:蛋白质鉴定Mass Hunter:代谢物鉴定SIMCA-P:PLS-DA基因、蛋白质和代谢物集富集、网络和通路分析Bingo(CytosCapev3.1.1插件)用于分析转录本和蛋白质的分子功能;DAVID和KEGG数据库对转录本和蛋白质进行途径富集分析。Metscape用于分析基因、蛋白质和代谢组学数据的整合途径;ClueGO(Cytoscape插件被用来探索基因和蛋白的分子功能。MetaboAnalyst 3.0被用来确定代谢物...
在线咨询
  • 咨询类别:
  • *
  • 联系人
  • 公司名称:
  • *
  • 公司网址:
  • MSN:
  • QQ:
  • 电话
  • 手机:
  • 传真:
  • E-mail:
  • *
  • 邮政编码:
  • 留言主题:
  • 留言内容
  • *
浏览次数: 79
发布时间: 2018 - 05 - 31
摘要赖氨酸乙酰化是一系列生物过程中多种蛋白的一种重要翻译后修饰。组蛋白乙酰化在植物防御机制中的作用已经有了很好的研究基础,病原菌效应蛋白编码的乙酰转移酶能够直接使宿主蛋白发生乙酰化进而改变免疫力。但是针对植物内源酶是否能够调节免疫反应中的蛋白乙酰化并不清楚。本文探究了炭色孢腔菌产生的一种组蛋白脱乙酰酶抑制剂(HCT)如何通过改变蛋白乙酰化来提高毒力。利用质谱分析技术对3636种蛋白进行了定量,并对HCT处理/HCT不足或能产生HCT的炭色孢腔菌处理的玉米的2791个位点的乙酰化水平进行鉴定。分析结果表明乙酰化是一种广泛存在的翻译后修饰,并且影响玉米蛋白的编码。此外,外源HCT的使用结果表明植物编码的蛋白(组蛋白去乙酰化酶)能够调控免疫反应过程中非组蛋白的乙酰化。材料方法玉米近等基因系:B73-NIL(hm1A),mock HCT solution (0.1% Tween-20), 100 μM HCT (Sigma), HCT-deficient (Tox-) or HCT-producing (Tox+) strain of C. carbonum。每种处理:多个植株的叶片混合,4个生物学重复。蛋白组检测:非修饰蛋白mock、100 μM HCT、Tox-、Tox+分别用itraq报告基团(114,115,116,117)标记;乙酰化蛋白富集(2mg乙酰化抗体+10mg玉米多肽),检测label-free(mock、100 μM HCT、Tox-、Tox+);检测平台:Agilent 1200 HPLC system+ LTQ Velos linear ion traptandem;原始数据查找比对:Spectrum Mill v3.03 (Agilent),B73 RefGen_v2 5b。MapMan bin enrichment:R(dhyper command),...
浏览次数: 63
发布时间: 2018 - 01 - 09
点带石斑鱼是一种原生雌雄同体海水鱼,由于其良好的肉质性质,在中国大受欢迎,具有很高的商业价值。最近,由于纳米技术的快速发展,铜纳米粒子(Cu-NPs)在日用消费品以及电子,医疗,生物科学等行业的应用日益增多。尽管纳米技术产品的广泛应用会带来明显的好处,但是对海洋环境的影响以及与水生生物群可能的相互作用的知识却很少见。铜纳米粒子可以积累在水生生物体中,并转移到更高的营养级别,对动物和人类构成健康危害。应用于纳米毒理学的转录组学和蛋白质组学可能有助于了解不同类型Cu污染物在水生生物体中的主要毒性机制和作用模式,并有助于识别纳米粒子暴露和影响的新颖和无偏见的生物标志物。表征转录组和蛋白质组可能提供了深入了解铜诱导鱼肝反应的分子机制,可能是一种有效的方法来识别新蛋白质,以及评估生态风险。在本研究中,使用暴露于Cu-NPs或CuSO4 24h的E. coioides幼鱼的肝脏来表征差异表达的基因和蛋白质,并鉴定对Cu-NPs或CuSO4毒性具有特异性的新的分子生物标志物。4的点带石斑鱼的转录组学,蛋白组学和生理学分析" title="暴露于Cu-NPs或CuSO4的点带石斑鱼的转录组学,蛋白组学和生理学分析"/01材料与方法1.1粒子特性通过电感耦合等离子体发射光谱(ICP-OES)确定两个组分中Cu的浓度。每个样品6个重复。通过X射线粉末衍射研究在海水中发生的Cu-NP的组成变化。离心后收集样品,经过夜真空干燥。将干燥的样品立即置于气密的小瓶中,并使用X射线粉末衍射进行分析。1.2鱼的饲养和24h LC50计算适应后,将6组鱼(每组10只,平均体重3.1±0.2g)随机放入装有50L过滤海水的容器中,然后暴露于不同浓(0,1.6,2.4,3.7,5.8或9.0mg Cu L-1)Cu-NPs。在接触期间,鱼不喂食,死鱼也被...
浏览次数: 111
发布时间: 2017 - 12 - 18
东方粘虫中甲壳素合酶A的鉴定和功能分析几丁质是最常见的氨基多糖,广泛分布于真菌,线虫和节肢动物。在昆虫和其他节肢动物中,几丁质是表皮外骨骼和一些内部结构的重要组成部分。通过控制几丁质的合成和降解,可以控制这些生物体的生长,发育和生命。甲壳素生物合成途径涉及8个关键调控酶,最后一步是甲壳素合成酶(CHS),其他包括海藻糖和己糖激酶。Mythimna separata(Walker)属于鳞翅目,夜蛾科,寄主于麦,稻,栗,玉米等禾谷类植物,以幼虫食叶,大发生是可将作物叶片全部食光,造成严重损失。因其群聚性、迁飞性、杂食性、暴食性,成为重要的农业害虫。利用RNAi技术结合转录组测序和蛋白组学技术阐述甲壳素合酶A对东方粘虫生长发育的调控。                                                                                                01  材料与方法转录组学测序平台:Hiseq 2500蛋白质组学检测平台:HPLC分级分离和LC-MS/MS  02  结果与分析2.1 MysCHSA cDNA的分离和鉴定MysCHSA全长序列为4,759bp(GenBank登录号:KT...
浏览次数: 676
发布时间: 2017 - 12 - 01
通过拟南芥myb28/29和cyp79B2/B3硫代葡萄糖苷突变体的蛋白质组学和代谢组学揭示硫代葡萄糖苷分子网络中的新节点和边缘芥菜中的硫代葡萄糖苷是植物次级代谢产物,以其在动物和人类中具有强烈的抗致癌活性而闻名。在植物防御和与环境的相互作用中发挥着重要的作用。利用在硫代葡萄糖苷生物合成中重要基因的拟南芥突变体基于定量蛋白质组学和代谢组学研究鉴定出许多与硫代葡萄糖苷代谢有关的蛋白质和代谢物。这项研究为硫代葡萄糖苷代谢分子网络提供了一个全面的见解,并将有助于提高作物防御和营养价值而进行的硫代葡萄糖苷分布的工程和育种。1材料与方法1. 样品采集收集5周龄的WT,myb28/29和cyp79B2/B3双重突变体的叶片用液氮速冻并置于-80℃下保存。2. 硫代葡萄糖苷的含量分析从20mg种子或200mg新鲜叶子中提取硫代葡萄糖苷,并脱磺酸化。将其冻干分别置于100μl和60μl水中重新溶解种子和叶样品。利用HPLC系统分离在229nm处监测峰。3. iTRAQ标记定量蛋白组学从500mg WT,myb28/29和cyp79B2/B3的叶中提取蛋白质。检测平台:Q-Exactive Plus MS;使用Proteome Discoverer 1.4进行蛋白质鉴定并进行生物信息学分析。4. 代谢组学分析每个生物重复35 mg干重。检测平台:GC-MS, UPLC-MS/MS。2结果与分析2.1myb28/29和cyp79B2/B3突变体的分子特性,形态和化学表型myb28/29中的T-DNA插入位点在MYB28的启动子区域的起始密码子之前182bp处和在MYB29的5'非翻译区启动密码子之前10bp处(图1A)。在cyp79B2/B3中,T-DNA插入位点在CYP79B2第二外显子起始密码子后1509bp和CYP79B3内含子起始密码子后1365(图1A)。来自突变体扩增的D...

蛋白组学

回到顶部
Copyright © 2005 - 2013 南京集思慧远生物科技有限公司
犀牛云提供企业云服务
地址:江苏省南京市栖霞区仙林大学城纬地路9号江苏生命科技创新园F6栋522室
技术顾问:025-85381280/025-85380280行政人事:025-83361344
邮箱:tech@genepioneer.com
邮编:330520